
Product Development

Case Studies

 Create high performance Billing application that consumes multiple services and
reference data sources.

 Integrate the Billing application with Source Data, Reference systems and Payment
gateway and Notification systems

 Support 100+ concurrent users, 2k+ daily active users, and 10k+ monthly active users
with invoice generation time of less than 1 minute.

Automated Invoice Generation - Intelligent and Efficient Billing

Product Development

Tools/Technology used: Spring MVC architecture, Java, AWS services, Payment gateway, Aurora, Python

2

Problem Statement

▪ An invoice generation application built using Spring MVC architecture hosted on AWS
solves the challenges of manual invoice generation

▪ We load invoice raw data from various source files into the data lake using AWS
Direct Connect. Upon file upload, necessary AWS services invoke the lambda
function utilizing primary data from the data lake and additional reference
data(e.g., GST rates, exchange rates) from Reference data management to generate
standard invoices and store them in the data lake

▪ Following invoice generation, notifications are sent to the downstream Payment
application through the payment gateway, and to Exchange server.

▪ IAM authenticated users access the web application to retrieve invoices, leveraging
services that engage reference data management and database via DAO

Solution Overview

Dispatcher
Servlet Services

Handler
Adapter

Spring beans XML
Configuration file

DAO
View

Request

Web.xmlApplication
Load Balancer

Amazon S3 AWS Lambda
RDS Aurora

Amazon SNS

AWS Direct
Connect

Users

Response

Call DAO
method

Response

Call business
methods

Controller

Reference Data Management

Invoice
Generation App

Request

Source Files

Amazon S3

Exchange
Server

AWS SQS AWS SNS AWS Lambda

Payment
gateway

AWS Lambda

IAM Users Login

Response

Request

Response

Request

Response

Connect
Database

 With the augmentation of features in our client’s Inventory Management Application,
scaling became challenging as the application grew. The architecture’s reliance on
single technology stack limited flexibility. Additionally Monolithic applications lacked
resilience and fault isolation, making it difficult to optimize resource allocation and
handle failures efficiently.

 Furthermore, monolithic architectures are prone to cascading failures, where an issue
in a single component can escalate and affect the entire system.

Inventory Management system – Monolithic and Microservices Architecture

Product Development

Tools/Technology used: Java, React, Microservices, Azure, Elastic cache, Azure SQL, Redis Cache, NOSQL SB 3

Problem Statement

▪ The inventory management system was redesigned for microservices architecture to
enhance the scalability, technology diversity, resilience, maintainability, and support
for continuous deployment

▪ Entra ID user logs in to the web application, and the request is directed to the Load
balancer and application gateway for routing to the master service, which contains
metadata and is linked to other slave services

▪ Based on the application requirements, services are designed and can be scaled
independently because they are loosely coupled

▪ The databases pertaining to the services are chosen based on the availability and
consistency across the applications. For example: Redis cache with NoSQL is used for
image processing

Solution Overview

Monolithic to
Microservices

MICROSERVICES ARCHITECTURE
Microsoft
Entra ID

Users

Product Catalog Stock Management Order processing Image processing

Web Application API Gateway

Elastic Cache

Blob Storage

Azure SQL Redis Cache

Request

NoSQL

Response
Inventory Management

Azure SQL

Azure SQL

Users

Inventory

View

Controller
Order Processing

Stock Management

Image Processing

Models

Azure DNS

Microsoft
Entra ID

Application
Gateway

Web App

Services

Repository

DNS Lookup

Azure SQL

No SQLBLOB

Response

Request Request

Response Response

Redis cache

MONOLOTHIC ARCHITECTURE

 Managing portfolio is cumbersome process which demand multiple features packaged
in single solution. The lack of real-time data and advanced analytics further
complicates decision-making, as portfolio managers struggle to respond promptly to
market changes.

 Additionally, the complexity in customization and scalability hinders the ability to
tailor solutions to specific portfolio needs.

Three tier Web Based Application for Portfolio Management

Product Development

Tools/Technology used: Azure services, Web App, Python, Database, Power BI

4

Problem Statement

▪ A three tier Web application was built to provide a comprehensive and integrated
solution that enhances efficiency, Security, Rule based validations and customization

▪ Entra authenticated users logs in the web application and they are provided with
the feature of uploading the portfolio details which is validated in the rule-based
engine and the necessary screens based on the groups/roles are displayed. The
data is transformed using the Python ETL scripts based on the business logics and
are loaded into the Database which is further leveraged for Dashboarding.

▪ Customized access controls and rule-based engine was implemented to enhance
the efficiency based on the customization needs of the customer.

Solution Overview

Users

ETL Job 1 (Python Script)

ETL Job 2 (Python Script)

ETL Job 3…n (Python Script)

DCT upload
Excel file

ETL Jobs
(Python Script)

Data lake

Admin Panel

History Data

Power BI

DCT ETL Master script

Entra Authentication
(Users, Groups,

Roles)

Web Application

Notifications

Exchange
Server

Database

salessupport@tresvista.com | www.tresvista.com

	Slide 1
	Slide 2: Product Development
	Slide 3: Product Development
	Slide 4: Product Development
	Slide 5

